# Example: Solve van der Pol equation using Python Let's try using _Open Interfaces_ by solving the Van der Pol equation: ```{math} \frac{\mathrm d^2 x}{\mathrm d t^2} - \mu \left( 1 - x^{2} \right) \frac{\mathrm d x}{\mathrm d t} + x = 0, \quad x(0) = 2 ``` with $\mu = 1000$ using different implementations of the IVP interface (interface for solving initial-value problems for ordinary differential equations): ```shell python examples/call_qeq_from_python.py [scipy_ode|sundials_cvode|jl_diffeq] ``` where the implementation argument is optional and defaults to `scipy_ode`. This script uses stiff solvers for initial-value problems, why the value of the parameter $\mu$ makes the system stiff. At the end of the computations, the resultant solution is displayed.